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Background: Accumulating evidence has demonstrated that plasma β-amyloid (Aβ)

levels are useful biomarkers to reflect brain amyloidosis and gray matter structure, but

little is known about their correlation with subclinical white matter (WM) integrity in

individuals at risk of Alzheimer’s disease (AD). Here, we investigated the microstructural

changes in WM between subjects with low and high plasma Aβ levels among individuals

with subjective cognitive decline (SCD).

Methods: This study included 142 cognitively normal individuals with SCD who

underwent a battery of neuropsychological tests, plasma Aβ measurements, and

diffusion tensor imaging (DTI) based on the Sino Longitudinal Study on Cognitive

Decline (SILCODE). Using tract-based spatial statistics (TBSS), we compared fractional

anisotropy (FA), and mean diffusivity (MD) in WM between subjects with low (N = 71)

and high (N = 71) plasma Aβ levels (cut-off: 761.45 pg/ml for Aβ40 and 10.74 pg/ml

for Aβ42).

Results: We observed significantly decreased FA and increased MD in the high Aβ40

group compared to the low Aβ40 group in various regions, including the body, the

genu, and the splenium of the corpus callosum; the superior longitudinal fasciculus; the

corona radiata; the thalamic radiation; the external and internal capsules; the inferior

fronto-occipital fasciculus; and the sagittal stratum [p < 0.05, familywise error (FWE)

corrected]. Average FA values were associated with poor performance on executive and

memory assessments. No significant differences were found in either MD or FA between

the low and high Aβ42 groups.

Conclusion: Our results suggest that a correlation exists between WM integrity and

plasma Aβ40 levels in individuals with SCD.

Keywords: plasma β-amyloid, diffusion tensor imaging, subjective cognitive decline, white matter, blood-based

biomarker
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INTRODUCTION

Extracellular β-amyloid (Aβ) accumulation and intracellular tau
deposition are the core features of Alzheimer’s disease (AD;
Jack et al., 2018). Amyloid pathology is defined as the initiating
step of AD, which leads to subsequent tau deposition and
neurodegeneration (Long and Holtzman, 2019); however, the
well-established and validated biomarkers for brain amyloidosis
detection, including cerebrospinal fluid (CSF) analysis and
amyloid PET, are expensive, invasive, and difficult to implement
on a large scale in clinical practice (Sperling et al., 2011, 2014;
Dubois et al., 2014; Honig et al., 2018). Therefore, minimally
invasive and affordable techniques to support early screening are
urgently needed.

Blood-based biomarkers represent a logical alternative.
Circulating Aβ peptides are the most studied AD biomarkers
in plasma. Growing evidence has demonstrated that plasma
Aβ concentrations are highly correlated with brain amyloidosis
(Nakamura et al., 2018; Risacher et al., 2019; Schindler et al.,
2019; Vergallo et al., 2019; Doecke et al., 2020), and the plasma
Aβ42/Aβ40 ratio has an accuracy of over 90% in identifying
brain amyloid positivity (Schindler et al., 2019; Doecke et al.,
2020). Several studies have also reported an association between
plasma Aβ levels and gray matter changes, including gray matter
volume and cerebral cortex thickness, in both cognitively normal
subjects and subjects with mild cognitive impairment (MCI) and
AD-related dementia (Kaffashian et al., 2015; Llado-Saz et al.,
2015; Cantero et al., 2016; Hanon et al., 2018; Hilal et al., 2018;
Youn et al., 2019), suggesting that plasma Aβ levels may reflect
downstream neurodegeneration.

White matter (WM) neurodegeneration of associative fiber
tracts in AD may result from gray matter atrophy and Wallerian
degeneration (Hardy and Higgins, 1992). Accumulating evidence
has demonstrated disrupted WM integrity in patients with AD,
MCI, and preclinical AD, which is related to cognitive decline
(Mayo et al., 2017; Brueggen et al., 2019; Power et al., 2019).
Though studies have shown an association of plasma Aβ levels
with WM macrostructures such as lesions, hyperintensities, and
atrophy (Janelidze et al., 2016; Hilal et al., 2017; Lippa et al., 2019;
Youn et al., 2019), the relationship between plasma Aβ levels and
WMmicrostructure has not been clarified.

Subjective cognitive decline (SCD) refers to those who

experience subjective cognitive deficits without measurable

cognitive impairment (Jessen et al., 2014, 2020). It is suggested

as one of the earliest manifestations of the AD continuum, and
accumulating evidence has demonstrated that individuals with
SCD may exhibit an increased risk of progression to cognitive
impairment and of developing AD (Mitchell et al., 2014; Slot
et al., 2019) and may present increased AD pathology (Amariglio
et al., 2015). Regardless of the absence of objective cognitive
impairment (OCI), SCD might become important for clinical
practice as an early trigger for seeking medical help because of an
increase in the number of individuals with SCD in the healthcare
system (Jessen et al., 2020). Thus, taking individuals with SCD
as an interesting target population to study may enhance our
understanding of early AD diagnosis and preventive treatment.
Recently, several studies have identified the correlation between

plasma Aβ and gray matter volume by performing structural
magnetic resonance imaging (sMRI) in individuals with SCD
(Cantero et al., 2016; Youn et al., 2019). Our previous study
showed widespread WM microstructure impairment in SCD (Li
et al., 2016); however, studies on its correlation with plasma Aβ

in this stage remain lacking.
Diffusion tensor imaging (DTI) can be employed for in

vivo detection of WM microstructural properties. Fractional
anisotropy (FA) and mean diffusivity (MD) are the most
commonly used types of indices in AD research, and they reflect
microstructural neuronal dysfunctions that precede macroscopic
atrophy (Soares et al., 2013; Qin et al., 2020). In this study,
we aimed to assess whether plasma Aβ levels are related
to subclinical microstructural WM integrity as measured by
DTI, and first, we hypothesized that higher plasma Aβ40 and
lower Aβ42 levels are associated with WM integrity. Second,
we hypothesized that plasma Aβ-related WM impairment is
associated with cognitive decline.

MATERIALS AND METHODS

Participants
The baseline dataset of the Sino Longitudinal Study on Cognitive
Decline (SILCODE; Li et al., 2019) from March 20, 2017 to
September 17, 2018, was included in the study. Excluding all
cases that failed to meet the inclusion criteria, a total of 142
cognitively normal elderly Han Chinese subjects with SCD
(mean age: 66.07 ± 3.88 years) were included. In addition,
26 patients with MCI and AD-related dementia categorized
as patients with OCI in the present study were included for
complementary analyses. All participants underwent clinical
assessment, a battery of neuropsychological tests, blood sample
collections, and MRI scans.

All participants were between 60 and 80 years old. SCD is
defined as follows (Jessen et al., 2014): (1) the onset of self-
experienced persistent decline (>6 months) within the last 5
years; (2) the onset of subjective decline in memory rather than
other domains (language, attention, planning, and any other
cognitive decline); (3) participants within the normal range
upon cognitive testing (adjusted for age, sex, and education)
and failure to meet the criteria for MCI or dementia. MCI
was diagnosed if they met any one of the following three
criteria (Bondi et al., 2008; Jak et al., 2009): (1) impaired
scores (defined as >1 SD below the age-corrected normative
means) on both measures in at least one cognitive domain
(memory, language, or speed/executive function); (2) impaired
scores in each of the three cognitive domains (memory, language,
or speed/executive function); and (3) the Functional Activities
Questionnaire (FAQ) ≥9. AD-related dementia was diagnosed
based on the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) and the National Institute
on Aging and the Alzheimer’s Association (NIA-AA) workgroup
guidelines for dementia due to AD. To eliminate the impact of
cerebral vascular disease, we excluded subjects with a history of
stroke, large-vessel disease (cortical and/or subcortical infarcts
and watershed infarcts), moderate WM changes, and multiple
lacunar infarcts (>1) on brain imaging. The SILCODE exclusion
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criteria ensured that no subjects with current major psychiatric
diagnosis; neurological disease; systematic disease that causes
cognitive decline, head trauma, or unstable medical conditions
were included. All subjects gave their written informed consent
prior to participation. The study protocol was approved by the
Medical Research Ethics Committee and Institutional Review
Board of Xuanwu Hospital. The SILCODE is listed in the
ClinicalTrail.gov registry (NCT02225964).

Neuropsychological Assessments
We performed a battery of neuropsychological tests covering
memory, language, and executive function. Auditory Verbal
Learning Test - Huashan version (AVLT)-long delayed recall and
-recognition (Xu et al., 2020) was used to evaluate memory;
Semantic Verbal Fluency Test (VFT; Guo et al., 2007) and
Boston Naming Test (BNT; Guo et al., 2006) were administered
to evaluate language; and time consumed in Shape Trail Test
A (STT-A) and B (STT-B; Zhao et al., 2013) were used
to evaluate executive function. The thresholds for memory,
language, and executive function tests are summarized in
Supplementary Table 1. The SCD questionnaire including nine
reliable SCD items (SCD-Q9) was used for the quantitative
assessment of the severity of SCD (Gifford et al., 2015). Mini-
Mental State Examination (MMSE) and Montreal Cognitive
Assessment Basic Version (MoCA-B) were used to evaluate
general cognitive ability. Besides, all subjects were assessed with
Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale
(HAMD), Geriatric Depression Scale (GDS), and the FAQ.

Plasma Aβ Measurements
Blood samples were collected in the morning after an overnight
fast. After centrifugation, the samples were aliquoted, stored at
−80◦C, and thawed immediately on ice before assaying. Meso
Scale Discovery (MSD) kits (Rockville, Maryland, USA) were
used to quantify the concentrations of plasma Aβ. All the samples
were measured in duplicate using the same aliquot following the
manufacturer’s instructions. The detection limits were 20–6,000
pg/ml for Aβ40 and 2.5–1,271 pg/ml for Aβ42. The mean inter-
assay and intra-assay coefficients of variation were <10 and 6%,
respectively, for both Aβ40 and Aβ42. The 142 subjects with
SCD were then divided into low and high Aβ groups (N = 71
case/group) with the cut-off defined by the mean value (Aβ40:
761.45 pg/ml; Aβ42: 10.74 pg/ml).

Image Acquisition and Analysis
All MRI data were acquired on an integrated simultaneous
3.0 T TOF PET/MR (Signa PET/MR, GE Healthcare, Milwaukee,
WI, USA) at Xuanwu Hospital of Capital Medical University.
DTI scans were collected axially with a single-shot spin-echo
diffusion-weighted echo planar imaging (EPI) sequence. The
parameters were as follows: 30 gradient directions and 5 b0
images (b = 1,000 s/mm2), field of view (FOV) = 256 × 256
× 256, matrix = 112 × 112, repetition time = 16,500ms, echo
time = 95.6ms, slice number = 70, slice thickness = 2mm, and
voxel size = 2 × 2 × 2 mm3. Three-dimensional T1 weighted
images were acquired with a Spoiled Gradient Recalled Echo
(SPGR) sequence. Additionally, T2 weighted and resting-state

functional MR images were collected. The parameter details have
been described in previous studies (Li et al., 2019; Sun et al., 2019;
Dong et al., 2020).

The DTI data of each subject were processed with a pipeline
tool for analyzing brain diffusion images (PANDA; Cui et al.,
2013), which integrates the FMRIB Software Library (FSL; Smith
et al., 2004), the Pipeline System for Octave and Matlab (PSOM;
Bellec et al., 2012), the Diffusion Toolkit, and the MRIcron. The
main steps of data preprocessing were as follows: (1) converting
DICOM files into NIFIT format; (2) estimating the brain mask:
The bet command of FSL was used to remove the skull from
b0 image; (3) cropping the raw image: The fslroi command
of FSL was used to remove non-brain tissue; (4) correcting
for the eddy-current effect: Head motion and eddy current
distortions were corrected by registration of the diffusion-
weighted images to the b0 images using the eddy_correct
command of FSL; and (5) calculating diffusion tensor parameters:
The dtifit command of FSL was applied to calculate FA and
MD maps. Tract-based spatial statistics (TBSS) were performed
for the voxel-wise analysis of FA and MD (Smith et al., 2006).
All individual images were registered to the 1 × 1 × 1mm
Montreal Neurological Institute (MNI) standard space with the
FMRIB58_FA template as the target image (http://www.fmrib.
ox.ac.uk/fsl/data/FMRIB58_FA). Then, a mean FA average was
obtained by averaging the FA images from each subject in
the standard space and thinning to create a custom mean FA
skeleton. The mean FA skeleton was thresholded at 0.2 to include
only voxels indicative ofWM. Then, the individual FAmaps were
projected onto the FA skeleton to obtain the FA skeletons of
each participant and the deformation matrixes. This projection
information was also applied to MD. The skeletonized FA and
MDmaps were used in further statistical analysis.

Statistical Analysis
Differences between the low and high Aβ groups in demographic
data and vascular comorbidity distribution were compared using
the two-sample t-test for continuous variables and the chi-square
test for categorical variables. To compare cognitive functions,
the general linear model (GLM) controlling for age, sex, and
years of education was conducted with neuropsychological tests
as independent variables and Aβ groups as dependent variables.

Voxel-wise cross-subject comparisons were performed using
the randomize tool in FSL, which is used for non-parametric
permutation-based testing. FA and MD were compared through
a GLM with Aβ groups as dependent variables. The design
matrix included age, sex, and years of education as nuisance
covariates. Significant differences were estimated with 5,000
random permutations using threshold-free cluster enhancements
(TFCE) and FWE correction for multiple comparisons. The
significance threshold was p < 0.05 and voxels > 100 (TFCE and
FWE corrected). Then, the significant results were thickened with
the tbss_fill tool in FSL for better visualization. Finally, the John
Hopkins University (JHU) White-Matter Tractography Atlas
and JHU-ICBM-DTI-81 White-Matter Labels Atlas were used
to identify regions of statistical significance (Mori et al., 2008).
Complementary analyses were conducted using the plasma Aβ

levels as continuous variables and by assessing subclinical WM
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TABLE 1 | Demographic and neuropsychological results.

Aβ40 p Aβ42 p

Low High Low High

Age 65.68 ± 3.64 66.45 ± 4.10 0.241 66.67 ± 3.92 66.47 ± 3.83 0.215

Sex (M/F) 23/48 22/49 0.857 22/49 23/48 0.857

Education 12.51 ± 2.94 11.96 ± 3.01 0.279 12.25 ± 2.76 12.22 ± 3.18 0.944

ApoE ε4 carrier, n% 21 (29.6) 14 (19.7) 0.173 14 (19.7) 21 (29.6) 0.173

Hypertension, n% 26(36.7) 30 (42.3) 0.492 32 (45.1) 24 (33.8) 0.170

Diabetes, n% 11 (15.5) 9 (12.7) 0.629 13 (18.3) 7 (9.6) 0.148

Hyperlipidemia, n% 27 (38.0) 26 (36.6) 0.862 27 (38.0) 26 (36.6) 0.862

Smoking, n% 15 (21.1) 14 (19.7) 0.835 16 (22.5) 13 (18.3) 0.532

SCD-9 4.80 ± 1.70 4.68 ± 1.91 0.607 4.52 ± 1.63 5.03 ± 1.94 0.057

AVLT-DR 7.56 ± 1.93 6.73 ± 2.20 0.033 6.89 ± 1.87 7.41 ± 2.30 0.088

AVLT-R 22.72 ± 1.40 21.096 ± 1.74 0.008 22.27 ± 1.68 22.27 ± 1.68 0.697

STT-A 57.73 ± 15.29 64.20 ± 16.43 0.041 61.40 ± 16.68 60.52 ± 15.71 0.636

STT-B 134.18 ± 34.16 139.89 ± 31.52 0.564 141.24 ± 33.68 132.83 ± 31.73 0.060

VFT 19.79 ± 4.45 17.89 ± 4.29 0.023 19.14 ± 4.55 18.54 ± 4.38 0.470

BNT 25.30 ± 2.74 24.63 ± 2.96 0.223 24.83 ± 3.02 25.10 ± 2.71 0.628

MMSE 28.93 ± 1.18 28.59 ± 1.72 0.285 28.68 ± 1.32 28.85 ± 1.63 0.395

MoCA-B 25.97 ± 2.47 25.37 ± 2.15 0.218 25.41 ± 2.20 24.93 ± 2.44 0.117

GDS 2.41 ± 2.00 2.94 ± 2.61 0.174 2.54 ± 2.21 2.83 ± 2.46 0.358

HAMA 4.37 ± 3.17 4.56 ± 3.93 0.856 4.30 ± 3.56 4.63 ± 3.58 0.580

HAMD 3.97 ± 3.95 4.37 ± 8.39 0.438 4.21 ± 4.34 4.13 ± 3.46 0.957

FAQ 0.18 ± 0.49 0.28 ± 0.83 0.46 0.20 ± 0.50 0.27 ± 0.83 0.587

Values of p for neuropsychological tests were obtained with the general linear model adjusted for age, sex, and years of education. ApoE, apolipoprotein E; AVLT-DR, Auditory Verbal

Learning Test-long delayed recall; AVLT-R, Auditory Verbal Learning Test-recognition; STT-A Shape Trail Test A; STT-B, Shape Trail Test B; VFT, Verbal Fluency Test; BNT, Boston Naming

Test; MMSE, Mini-Mental State Examination; MoCA-B, Montreal Cognitive Assessment Basic Version; GDS, Geriatric Depression Scale; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton

Depression Scale; FAQ, Functional Activities Questionnaire.

integrity correlations. The correlations were run separately in the
SCD and OCI groups.

To determine the relationships between the WM parameters
and cognitive function, partial correlation analysis controlling
for age, sex, and year of education was performed between the
impaired cognitive scores and average FA (MD) values of regions
showing significant group differences. The significance threshold
was p < 0.05.

RESULTS

Behavioral Results
Table 1 summarizes the demographic and neuropsychological
results according to plasma Aβ levels in SCD. Age, sex,
years of education, ApoE genotype distribution, and vascular
comorbidities were statistically homogeneous. The high Aβ40
group exhibited poorer performance on memory, executive, and
language tests (AVLT-DR: F = 4.652, p = 0.033; AVLT-R: F =

7.219, p = 0.008; STT-A: F = 4.271, p = 0.0341; VFT: F = 5.260,
p= 0.023). The low and high Aβ42 groups showed no significant
difference in cognitive tests in the three domains. No significant
differences in SCD-Q9 scores between the low and high Aβ

groups were detected (neither Aβ40 nor Aβ42). The demographic
and neuropsychological results in the total SCD sample and the
OCI sample are summarized in Supplementary Table 2.

Comparisons of Whole Brain WM Between
the Low and High Aβ Groups
Compared with the low Aβ40 group, the high Aβ40 group
exhibited decreased FA and increased MD in widespread WM
tracts (TFCE and FWE corrected, p < 0.05), mainly located
in the body, the genu, and the splenium of corpus callosum;
the superior longitudinal fasciculus; the anterior, superior, and
posterior corona radiata; the thalamic radiation; the external
and internal capsules; the inferior fronto-occipital fasciculus;
the sagittal stratum; the cerebral peduncle; and the fornix (see
Figure 1 and Supplementary Table 3). After FWE correction, no
significant differences were noted for FA and MD between the
low and high Aβ42 groups.

Relationship Between WM and
Neuropsychological Tests
In the extracted cluster, the relationship between average MD
and FA values and impaired cognitive tests (AVLT-DR, AVLT-
R, STT-A, and VFT) observed in the high Aβ40 group was
investigated. Age, sex, and years of education were included as
covariates. Average FA values were negatively correlated with
STT-A (r = −0.174, p = 0.041) and positively correlated with
AVLT-R (r = 0.192, p = 0.023; see Figure 2). No significant
correlation between MD values and cognitive scores was noted
(see Supplementary Table 4).
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FIGURE 1 | Comparison of the fractional anisotropy (FA) and mean diffusivity (MD) findings between the high and low Aβ40 groups. The averaged skeleton (green

color) was overlaid with significantly lower FA (blue-light color) and higher MD (red-yellow color) in the high Aβ40 group compared with the low Aβ40 group (TFCE and

FWE corrected p < 0.05, voxels > 100). The analysis controlled for age, sex, and years of education.

FIGURE 2 | Scatter plots illustrating the relationships between average white matter (WM) parameters and neuropsychological tests controlling for age, sex, and years

of education. (A) A significant negative correlation was found between the FA values and the Shape Trail Test-A (STT-A) scores. (B) A significant positive correlation

was found between FA values and Auditory Verbal Learning Test (AVLT)-recognition scores.
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FIGURE 3 | Significant association between WM microstructure parameters and plasma Aβ40 in subjective cognitive decline (SCD) and patients with objective

cognitive impairment (OCI). FA revealed a negative correlation with plasma Aβ40 in SCD (blue-light color), and MD exhibited a positive correlation with plasma Aβ40 in

both the SCD and OCI groups (red-yellow color) (TFCE and FWE corrected p < 0.05, voxels > 100). The regions with statistical significance were projected on the

averaged skeleton (green color). The scatter plots show the average values (y-axis) from the significant regions for each subject against plasma Aβ40 (x-axis) for each

participant. The analysis controlled for age, sex, and years of education.

Complementary Analysis
In the SCD group, the voxel-wise analysis using the plasma Aβ

levels as continuous variables revealed a significant association
of higher plasma Aβ40 levels with decreased FA and increased
MD values (TFCE and FWE corrected, p < 0.05), which were
located in similar regions as noted in the group comparison
(see Figure 3 and Supplementary Table 5). In the OCI group,
a positive correlation between MD and plasma Aβ40 levels
was identified in the bilateral forceps minor, the superior
longitudinal fasciculus, the inferior longitudinal fasciculus,
the anterior thalamic radiation, the inferior fronto-occipital
fasciculus, the cingulum, and the corticospinal tract (see Figure 3

and Supplementary Table 5). Both correlations between Aβ42
and FA and MD were not significant within the SCD and
OCI groups.

DISCUSSION

In the present study, we investigated the association between

plasma Aβ levels and WM microstructure. Both decreased

FA and increased MD values were found in the high Aβ40

group and were mainly located in the corpus callosum, the
superior longitudinal fasciculus, the corona radiata, the thalamic
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radiation, the external and internal capsules, the inferior fronto-
occipital fasciculus, the sagittal stratum, the cerebral peduncle,
and the fornix. Moreover, the decreased FA was associated
with poor performance on STT-A and AVLT-R; however, no
significant differences were found in the DTI parameters between
the low and high Aβ42 groups.

This study identified an association between higher
plasma Aβ40 levels and WM microstructure abnormalities
in individuals with SCD and OCI. Though some studies have
investigated the association between plasma Aβ40 levels and
WM hyperintensities, lesions and WM volume (Janelidze et al.,
2016; Hilal et al., 2017; Youn et al., 2019), we found that the
correlation between the plasma Aβ40 levels and WM integrity
remained significant after excluding those with cerebral vascular
disease. Our results were consistent with previous studies
that showed the association between plasma Aβ40 levels and
neurodegeneration biomarkers, such as hippocampal atrophy
and thinner cerebral cortex thickness, in both cognitively normal
elderly subjects and patients with AD (Kaffashian et al., 2015;
Llado-Saz et al., 2015; Hanon et al., 2018). The association
between plasma Aβ40 and WM integrity may result from the
role of Aβ40 in cerebrovascular abnormalities in AD. Aβ40
was found to reproduce the cerebrovascular alterations in
transgenic mice overexpressing the amyloid precursor protein
(APP; Niwa et al., 2000), and circulating Aβ40 could enhance
the cerebrovascular dysfunction induced by brain Aβ40, which
may contribute to WM impairment (Park et al., 2013). Though
the age was matched between the low and high Aβ40 groups and
included as a covariate for statistical analysis, we cannot exclude
the possibility that the association of age with both plasma Aβ40
levels and DTI parameters contributed to the correlation found
in our study (Kleinschmidt et al., 2016; Lovheim et al., 2017;
Jiang et al., 2019; Zavaliangos-Petropulu et al., 2019).

The correlations with Aβ40 seemed to be more widespread
and pronounced in MD compared with FA in both the SCD
and OCI groups. The biological bases of MD and FA may differ
and are not fully understood. FA corresponds to the degree
of directionality and anisotropic diffusion, which is assumed
to reflect WM impairment caused by microstructural damage
such as axonal degradation (Soares et al., 2013; Brueggen et al.,
2019). In contrast, MD is calculated based on the mean of
three eigenvalues and corresponds to the diffusion rate, which
is assumed to reflect WM impairment caused by membrane
integrity damage. FA analysis can be influenced by crossing
fibers more than MD, which may limit its power to detect WM
degeneration (Soares et al., 2013; Brueggen et al., 2019).

Contrary to our hypothesis, we did not identify significant
differences in FA andMDbetween the low and high Aβ42 groups,
where the identification is consistent with a previous study in
patients with a history of traumatic brain injury (Lippa et al.,
2019). Peripheral Aβ42 is highly correlated with brain amyloid
pathology (Nakamura et al., 2018; Schindler et al., 2019; Doecke
et al., 2020); whereas, several studies have indicated that the
loss of WM integrity reflects early tau accumulation other than
amyloid pathology (Strain et al., 2018). Kantarci et al. (2017)
reported higherMD and lower FA in higher Braak neurofibrillary
tangle staging than in those with high Aβ neuritic plaques, which

may result in the lack of association between WM parameters
and plasma Aβ42 in our study. Our results indicated that plasma
Aβ42 levels may not reflect subclinical WM impairment.

We observed significant differences between the low and
high Aβ40 groups in memory, executive, and language domains.
Subjects with increased Aβ40 performed poorly on cognitive
tests, though the performance of the participants in the present
study on cognitive tests was within the normal range. Consistent
with our findings, large population-based studies have reported
the association of increased Aβ40 with the risk of dementia
as well as with declining cognitive measurements (Hilal et al.,
2018; Verberk et al., 2018); however, some studies also found
an association between plasma Aβ42 and impaired cognition
(Llado-Saz et al., 2015). Differences in patient age, clinical status,
and analysis techniques may affect plasma Aβ quantification and
result in inconsistencies between studies (Toledo et al., 2013;
Palmqvist et al., 2018; Wang et al., 2018). We further found
an association between the STT-A and AVLT-R scores, and the
average FA values within the regions exhibit significant group
differences, indicating that plasma Aβ40-related WM structural
changes may reflect cognitive function in individuals with SCD.

Our study has several limitations. First, this study employed
a cross-sectional design. We found that higher Aβ40 levels were
associated with disrupted diffusion inWM; however, whether the
plasmaAβ40 level correlated with the cause ofWMabnormalities
in subjects with SCD was not clarified. The lack of repeated
measurements of blood Aβ concentrations limits the evaluation
of the trajectory of plasma levels in relation to WM impairment.
Thus, longitudinal studies are needed to identify the dynamic
correlation between plasma Aβ levels and WM integrity. Second,
we did not analyze brain amyloid or tau pathology; therefore,
further studies are needed to determine whether central amyloid
or tau induces the association between plasma Aβ levels and
WM integrity. Finally, additional studies should be conducted in
subjects with different cognitive statuses to determine whether
the correlations are dependent on disease progression.

CONCLUSION

In summary, the current study demonstrated different WM
microstructures between subjects with low and high Aβ40 levels
among individuals with SCD. The findings suggest that plasma
Aβ40 levels could reflect central neurodegeneration and may
represent a useful biomarker to predict different trajectories of
aging in individuals with SCD.
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